Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Zerrin Heren, ${ }^{\text {a }}$ Cem Cüneyt Ersanlı, ${ }^{\mathbf{b}}$ * Cem Keser ${ }^{\mathbf{a}}$ and Nazan Ocak Ískeleli ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, ${ }^{\text {b }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and ${ }^{\mathbf{c}}$ Department of Science Education, Sinop Faculty of Education, Ondokuz Mayıs University, TR-57000 Sinop, Turkey

Correspondence e-mail: ccersan@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.024$
$w R$ factor $=0.063$
Data-to-parameter ratio $=14.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Redetermination of trans-diaquabis(picolinato$\left.\kappa^{2} N, O\right)$ cobalt(II) dihydrate

The crystal structure of the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, has been reinvestigated with improved precision [previous reports: Chang et al. (1972). J. Coord. Chem. 2, 31-34; Lumme et al. (1969). Suom. Kemistil. B, 42, 270]. In the title compound, the Co atom is located on an inversion center and its coordination can be described as slightly distorted octahedral, equatorially trans-coordinated by two N and O atoms of two picolinate ligands and axially coordinated by two O atoms of the water molecules. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions result in the formation of an intricate three-dimensional network.

Comment

Picolinic acid (pyridine-2-carboxylic acid) is a well known terminal tryptophan metabolite (Mahler \& Cordes, 1971). It has biological activity to induce apoptosis in leukemia HL-60 cells, which is cell death characterized by DNA fragmentation (Ogata et al., 2000). Pyridine-2-carboxylic acid and its analogs have been used increasingly in the synthesis of high-nuclearity transition metallacrowns with high spin values which could be used as single-molecule magnets (Sessoli et al., 1993; Thomas et al., 1996; Aubin et al., 1996; Gatteschi et al., 2000; Winpenny, 1999; Liu et al., 2001). We report here a redetermination of the crystal structure of the title compound, (I), which has been determined previously by Chang et al. (1972) with a higher R value (0.097) and atom H 8 removed from the atom list for suspected coordinate error(s) (Cambridge Structural Database, Version 5.26; Allen, 2002), and by Lumme et al. (1969) with no R value given.

The complex molecule of (I) lies on an inversion center and thus the asymmetric unit contains only one half-complex. The coordination of the Co atom located on the inversion center is slightly distorted octahedral (Fig. 1). The Co atom is transcoordinated by two carboxylic O atoms (O1) and two pyridine N atoms (N 1) from two picolinate ligands and two O atoms (O1W) of two water molecules. The equatorial plane consists of N and O atoms from the two picolinate ligands and the axial

Received 20 February 2006
Accepted 10 March 2006

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of the structure of (I), showing the atomic numbering. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level [symmetry code: (i) $1-x, 1-y$, $1-z]$.

Figure 2
View showing the formation of a chain of rings through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding. H atoms bonded to C atoms have been omitted. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) $1-x$, $1-y, 1-z$; (ii) $-x+1,-y+2,-z+1$; (iii) $-x+1, y-\frac{1}{2}, \frac{1}{2}-z$; (iv) x, $\frac{3}{2}-y, z-\frac{1}{2}$.]
positions are occupied by the water molecules. The bond lengths around the metal $[\mathrm{Co}-\mathrm{O} 1=2.065$ (1) $\AA, \mathrm{Co}-\mathrm{N} 1=$ 2.119 (1) \AA and $\mathrm{Co}-\mathrm{O} 1 W=2.138$ (1) \AA] fall into normal ranges.

There is an intricate hydrogen bonding network generated by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. Atom $\mathrm{O} 1 W$ acts as a hydrogen-bond donor to water atom $\mathrm{O} 2 W$ and to carboxylate atom $\mathrm{O} 1(-x+1,-y+2,-z+1)$, whereas $\mathrm{O} 2 W$ acts as a hydrogen-bond donor to the symmetry-related water molecule $\mathrm{O} 2 W\left(-x+1, y-\frac{1}{2}, \frac{1}{2}-z\right)$ and to the second carboxylate atom $\mathrm{O} 2\left(x, \frac{3}{2}-y, z-\frac{1}{2}\right)$, so generating by translation a $C_{3}^{3} C(6) C_{3}^{3} C(8) C_{2}^{2}(9) R_{4}^{3}(10) R_{3}^{3}(10)$ chain of rings (Bernstein et al., 1995) running parallel to the [001] direction (Table 1 and Fig. 2). In addition, atom C 3 of the pyridine ring acts as a hydrogen-bond donor to the carboxylate atom

Figure 3
View down the b axis, showing the interconnection between the chains of rings. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
$\mathrm{O} 2(-x, 2-y, 1-z)$, generating an $R_{2}^{2}(10)$ ring linking the chains into a three-dimensional network (Fig. 3).

Experimental

A solution of picolinic acid ($2.4 \mathrm{mmol}, 0.29 \mathrm{~g}$) in absolute ethanol $(20 \mathrm{ml})$ was added dropwise with stirring to a solution of cobalt(II) acetate tetrahydrate $(1.2 \mathrm{mmol}, 0.30 \mathrm{~g})$ in absolute ethanol $(20 \mathrm{ml})$. The mixture was heated to 333 K in a temperature-controlled bath and stirred for 4 h . The reaction mixture was then cooled to room temperature. The orange crystals which formed were filtered off and washed with 10 ml of water and dried in air (yield 75%, based on Co). Chemical analyses found for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NiO}_{8}$: C 38.41, H 4.30, N 7.47%; calculated: C 37.92, H 4.17, N 7.35%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=375.20$
Monoclinic, $P 2_{1} / c$
$a=9.8093(9) \AA$
$b=5.1846(3) \AA$
$c=17.5233(16) \AA$
$\beta=123.780(6)^{\circ}$
$V=740.74(11) \AA^{3}$
$Z=2$

$D_{x}=1.682 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 14007 data
$\theta=2.5-27.9^{\circ}$
$\mu=1.20 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Plate, orange
$0.37 \times 0.19 \times 0.02 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.879, T_{\text {max }}=0.961$
12035 measured reflections
1760 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0389 P)^{2}\right. \\
& +0.0458 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.26 \mathrm{e}^{\circ} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}
\end{aligned}
$$

1441 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=27.9^{\circ}$
$h=-12 \rightarrow 12$
$k=-6 \rightarrow 6$
$l=-23 \rightarrow 22$
$w R\left(F^{2}\right)=0.063$
$S=1.03$
1760 reflections
118 parameters

H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\text {i }}$	0.847 (9)	1.892 (10)	2.7300 (17)	169.9 (19)
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O} 2 W$	0.84 (2)	1.956 (10)	2.7900 (19)	171 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 A \cdots \mathrm{O} 2 W^{\text {ii }}$	0.832 (10)	2.150 (15)	2.9264 (18)	155 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 B \cdots \mathrm{O} 2^{\text {iii }}$	0.841 (10)	1.853 (10)	2.6891 (19)	173 (3)
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 2{ }^{\text {iv }}$	0.93	2.54	3.447 (2)	166

C-bound H atoms were positioned geometrically and were treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. The water H atoms were refined using bond restraints: $\mathrm{O}-\mathrm{H}=0.85(1) \AA, \mathrm{H} \cdots \mathrm{H}=1.39 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s)
used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Aubin, S. M. J., Wemple, M. W., Adams, D. N., Tsai, H.-L., Christou, G. \& Hedrickson, D. N. (1996). J. Am. Chem. Soc. 118, 7754-7764.
Bernstein, J., Davies, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Chang, S. C., Ma, J. K. H., Wang, J. T. \& Li, N. C. (1972). J. Coord. Chem. 2, 3134.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gatteschi, D., Sessoli, R. \& Cornia, A. (2000). Chem. Commun. pp. 725-732.
Liu, S. X., Lin, S., Lin, B. Z., Lin, C. C. \& Huang, J. Q. (2001). Angew. Chem. Int. Ed. 40, 1084-1087.
Lumme, P., Viertola, R. \& Lundgren, G. (1969). Suom. Kemistil. B, 42, 270.
Mahler, H. R. \& Cordes, E. H. (1971). Biological Chemistry, 2nd ed., pp. 801803. New York: Harper and Row Publishers.

Ogata, S., Takeuchi, M., Fujita, H., Shibata, K., Okumura, K. \& Taguchi, H. (2000). Biosci. Biotechnol. Biochem. 64, 327-332.

Sessoli, R., Gatteschi, D., Caneschi, A. \& Novak, M. A. (1993). Nature (London), 365, 141-143.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED 32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Thomas, L., Lionti, F., Ballou, R., Gatteschi, D., Sessoli, R. \& Barbara, B. (1996). Nature (London), 383, 145-147.

Winpenny, R. E. P. (1999). Comments Inorg. Chem. 20, 233-262.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

